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We investigate the time average mean-square displacement �2(x�t�)=�0
t−��x�t�+��−x�t���2dt� / �t−�� for

fractional Brownian-Langevin motion where x�t� is the stochastic trajectory and � is the lag time. Unlike the
previously investigated continuous-time random-walk model, �2 converges to the ensemble average �x2�
� t2H in the long measurement time limit. The convergence to ergodic behavior is slow, however, and surpris-
ingly the Hurst exponent H= 3

4 marks the critical point of the speed of convergence. When H�
3
4 , the ergodicity

breaking parameter EB= [���2(x�t�)]2�− ��2(x�t�)�2] / ��2(x�t�)�2�k�H��t−1, when H= 3
4 , EB�� 9

16��ln t��t−1, and
when 3

4 �H�1, EB�k�H��4−4Ht4H−4. In the ballistic limit H→1 ergodicity is broken and EB�2. The critical
point H= 3

4 is marked by the divergence of the coefficient k�H�. Fractional Brownian motion as a model for
recent experiments of subdiffusion of mRNA in the cell is briefly discussed, and a comparison with the
continuous-time random-walk model is made.
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I. INTRODUCTION

Fractional calculus, e.g., d1/2 /dt1/2, is a powerful math-
ematical tool for the investigation of physical and biological
phenomena with long-range correlations or long memory �1�.
For example, fractional calculus describes the mechanical
memory of viscoelastic materials �2�. An important applica-
tion of fractional calculus is the stochastic modeling of
anomalous diffusion. Fractional Fokker-Planck equations de-
scribe the long time behavior of the continuous-time random
walk �CTRW� model, when waiting times and/or jump
lengths have power-law distributions �1,3–5�. A different sto-
chastic approach to anomalous diffusion is based on frac-
tional Brownian motion �fBM� �6�, which is related to re-
cently investigated fractional Langevin equations �see details
below� �7–10�.

Recent single-particle tracking of mRNA molecules �11�
and lipid granules �12� in living cells revealed that time-
averaged mean-square displacement �2 �defined below more
precisely� of individual particles remains a random variable
while indicating that the particle motion is subdiffusive. This
means that the time averages are not identical to ensemble
averages. Such breaking of ergodicity was investigated
within the subdiffusive CTRW model �13,14�. It was shown
that transport and diffusion constants extracted from single-
particle trajectories remain random variables, even in the
long measurement time limit. For a nontechnical point of
view on this problem, see �15�. Here we consider the fluc-
tuations of the time-averaged mean-square displacement

�2
„x�t�… =

�0
t−��x�t� + �� − x�t���2dt�

t − �
, �1�

where � is called the lag time, and x�t� is the stochastic path
of fBM or fractional Langevin motion. As is well known, if
x�t� is normal Brownian motion, the ensemble average mean-
square displacement is �x2�t��=2D1t while the time-average
mean-square displacement of the single trajectory �2(x�t�)
=2D1� in statistical sense and in the long measurement time
limit. Hence in experiments we may use a single trajectory of

a Brownian particle to estimate the diffusion constant D1.
Will similar ergodic behavior be found also for fBM and
fractional Langevin equations? Or will fBM exhibit ergodic-
ity breaking similar to the CTRW model? Note that the prob-
lem of estimating diffusion constants from single-particle
tracking, for normal diffusion, is already well investigated
�16�.

In recent years, there was much interest in nonergodicity
of anomalous diffusion processes. A well investigated system
is blinking quantum dots �17,18�, which exhibit a Lévy walk
type of dynamics �a superdiffusive process�. A very general
formula for the distribution of time averages for weakly non-
ergodic systems was derived in �19�, and this framework was
shown to describe the subdiffusive CTRW �20�. Bao et al.
have investigated ergodicity breaking for stochastic dynam-
ics described by the generalized Langevin equation �21�.
They considered the time-averaged velocity variance. The
latter converges to kBT /m in thermal equilibrium if the pro-
cess is ergodic. It was shown �21� that under certain condi-
tions, the generalized Langevin equation is nonergodic �see
also �22–26��. Our work, following the recent experiments
�11,12�, considers the time average of the mean-square dis-
placements, which yields information on diffusion constants.

This paper is organized as follows. In Sec. II, we define
the models under investigation: fBM and overdamped and
underdamped fractional Langevin motion. In Sec. III, we de-
rive the ergodic properties of the models under investigation,
in particular we analyze the fluctuations of the time average
Eq. �1�. The technical parts of our derivation and simulation
procedure are left for Appendixes A and B. Finally, we end
with a discussion in Sec. IV, where comparison to the CTRW
model is made, and the relation with experiments is men-
tioned very briefly.

II. STOCHASTIC MODELS

A. Fractional Brownian motion

Fractional Brownian motion is generated from fractional
Gaussian noise, like Brownian motion from white noise.
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Mandelbrot and van Ness �6� defined fBM with

BH�t� ª
1

�	H +
1

2

	�0

t

�t − ��H−�1/2�dB���

+ �
−�

0

��t − ��H−�1/2� − �− ��H−�1/2��dB���
 , �2�

where � represents the Gamma function and 0�H�1 is
called the Hurst parameter. The integrator B is ordinary
Brownian motion. Note that B is recovered when taking H
= 1

2 . The right-hand side of Eq. �2� is the sum of two Gauss-
ian processes. In the definition, for the first Gaussian process,
we identify the so-called fBM of Riemann-Liouville type
�27�. Standard fBM, i.e., Eq. �2�, is the only Gaussian self-
similar process with stationary increments �6�. The variance
of BH�t� is 2DHt2H, where DH= ���1−2H�cos�H��� / �2H��.
In the following, for some given H, we denote the trajectory
sample of fBM x�t�. The properties that uniquely character-
ize the fBM can be summarized as follows: x�t� has station-
ary increments; x�0�=0 and �x�t��=0 for t	0; �x2�t��
=2DHt2H for t	0; x�t� has a Gaussian distribution for t
0.
From the above properties, the covariance function is �28�

�x�t1�x�t2�� = DH�t1
2H + t2

2H − �t1 − t2�2H�, t1,t2 
 0. �3�

The nonindependent increment process of fBM, called frac-
tional Gaussian noise �fGn�, is given by

��t� =
dx�t�

dt
, t 
 0, �4�

which is a stationary Gaussian process and has a standard
normal distribution for any t
0. The mean ���t��=0 and the
covariance is

���t1���t2�� = 2DHH�2H − 1��t1 − t2�2H−2, t1,t2 
 0. �5�

B. Fractional Langevin equation

The standard Langevin equation with white noise can be
extended to a generalized Langevin equation with a power-
law memory kernel. Such an approach was recently used to
model the dynamics of single proteins by the Xie group �8�
and can be derived from the Kac-Zwanzig model of Brown-
ian motion �29�. The underdamped fractional Langevin equa-
tion reads

m
d2y�t�

dt2 = − �̄�
0

t

�t − ��2H−2dy

d�
d� + ��t� , �6�

where according to the fluctuation dissipation theorem

 = kBT�̄

2DHH�2H − 1�
,

��t� is fGn defined in Eqs. �4� and �5�, 1
2 �H�1 is the Hurst

parameter, and �̄
0 is a generalized friction constant. Equa-
tion �5� is called a fractional Langevin equation since the
memory kernel yields a fractional derivative of the velocity

�use the Laplace transform or see �1,30��. Note that if
0�H�

1
2 , the integral over the memory kernel diverges, and

hence it is assumed that 1
2 �H�1. This leads to subdiffusive

behavior �y2�� t2−2H. An overdamped fractional Langevin
equation, where Newton’s acceleration term is neglected,
reads �8�

0 = − �̄�
0

t

�t − ��2H−2 dz

d�
d� + ��t� . �7�

Another convenient way to write Eq. �6� is

m
d2y�t�

dt2 = − �̄��2H − 1�
d2−2Hy�t�

dt2−2H + ��t� , �8�

where the fractional derivative is defined in the Caputo
sense,

d2−2Hy�t�
dt2−2H =

1

��2H − 1��0

t

�t − ��2H−2dy

d�
d� . �9�

In recent years, fractional calculus was used to describe
many physical systems �1�. In what follows, we investigate
ergodic properties of the processes x�t�, y�t�, and z�t�.

III. ERGODIC PROPERTIES

In this section, we consider the fluctuations of time-
average mean-square displacement �2 for three models of
anomalous diffusion. If the average of �2 is equal to the
ensemble average �x2�, and if the variance of �2 tends to zero
when the measurement time is long, the process is ergodic,
since then the distribution of �2 tends to a delta function
centered on the ensemble average. Hence the variance of �2

is a measure of ergodicity breaking.

A. Fractional Brownian motion

For fBM, using Eqs. �1� and �3�,

��2
„x�t�…� =

�
0

t−�

��x�t� + �� − x�t���2�dt�

t − �
= 2DH�2H,

�10�

hence ��2�= �x2� for all times. The variance of �2(x�t�) is

Xvar��2
„x�t�…� = ���2

„x�t�…�2� − ��2
„x�t�…�2. �11�

A dimensionless measure of ergodicity breaking �EB� is the
parameter

EB„x�t�… =
Xvar��2

„x�t�…�
��2

„x�t�…�2 , �12�

which is zero in the limit t→� if the process is ergodic. In
Appendix A, we derive our main result. Valid for large t, we
find
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EB„x�t�… ��
k�H�

�

t
, 0 � H �

3

4
,

k�H�
�

t
ln t , H =

3

4
,

k�H�	�

t

4−4H

,
3

4
� H � 1,

� �13�

where

k�H�

=��0

�

��� + 1�2H + �� − 1�2H − 2�2H�2d� , 0 � H �
3

4
,

4H2�2H − 1�2 =
9

16
, H =

3

4
,

	 4

4H − 3
−

4

4H − 2

H2�2H − 1�2,

3

4
� H � 1.

�
�14�

The most remarkable result is that k�H� diverges when H
→ 3

4 , H= 3
4 marks a nonsmooth transition in the properties of

fractional Brownian motion; see Fig. 1. Notice that k�H�
→0 when H→0 so the asymptotic convergence is expected
to hold only after very long times when H is small, since
then the diffusion process is very slow. When H→1, we
have EB�x�t���2 indicating ergodicity breaking; see Fig. 2.

Figure 3 displays the simulations of �2(x�t�) showing the
randomness of the time average for finite-time measure-
ments. In this simulation, we generate single trajectories us-
ing Hosking’s method �34�, and then perform the time aver-
age to find �2. The figure mimics the experimental results on
single lipid granule in a yeast cell and of mRNA molecules
inside living E-coli cells �11,12�, where H= 3

8 was recorded.
Note, however, that the scatter of the experiments data seems
larger �see figures in �11,12��, at least with the naked eye.
Further, we did not consider in our simulations the effect of

the cell boundary. Direct comparison at this stage between
experiments and stochastic theory is impossible, since the
number of measured trajectories is small.

B. Overdamped fractional Langevin equation

We now analyze the overdamped fractional Langevin Eq.
�7�. We can rewrite it in a convenient way as
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FIG. 1. �Color online� The function of k�H�, Eq. �14�.
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FIG. 2. �Color online� The EB parameter Eq. �13� for fractional
Brownian motion x�t� versus time t, for different values of the Hurst
exponent. Here we present exact results obtained directly by calcu-
lating Eqs. �10�, �A3�, and �A4�. The two solid lines �red online� are
the asymptotic theory Eq. �13� for H=0.2 and 0.9. In the ballistic
limit H→1, we get nonergodic behavior. Notice that for H�3 /4
and long t, the curves are parallel to each other due to the EB

� t−1 law valid for H�3 /4, while for H
3 /4 the slopes are chang-
ing as we vary H. The lag time is �=1.
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FIG. 3. �Color online� We simulate fBM and present the time
average �2(x�t�) versus � �dotted curves, blue online�. We show 23
trajectories, the solid line in the middle being the average of the
trajectories. We observe �2(x�t�)��3/4, similar to that in �11,12�.
The measurement time is t=104, H= 3

8 , DH= 1
2 . Line with a slope of

0.75 is drawn to guide the eye. We also show ��̄2��Xvar��2� �two
solid lines, red online� obtained from Eqs. �10� and �A11�, which
give an analytical estimate on the scatter of the data.
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�̄��2H − 1�D1−2HDz�t� = ��t� , �15�

where D=d /dt, and D1−2H is the Riemann-Liouville frac-
tional integral of 2H−1 order. Using the tools of fractional
calculus �30�, we get

�̄��2H − 1�z�t� = D2H−2��t� . �16�

Then since ���t��=0 we have �z�t��=0, and

�z�t1�z�t2�� = DF�t1
2−2H + t2

2−2H − �t1 − t2�2−2H� , �17�

where

DF =
kBT� csc���2 − 2H��

�̄�2 − 2H��2�2H − 1��2�2 − 2H�
.

From Eq. �17� we learn that Eq. �15� exhibits the same be-
havior as fBM �Eq. �2�� in the subdiffusion case. Note that
for fBM �x2�� t� with �=2H while for the fractional Lange-
vin equation �z2�� t� with �=2−2H, and of course the dif-
fusion constants have different dependencies on parameters
of the noise. However, these minor modifications do not
change our main result for 0�H�

1
2 obtained in the previous

section �only switch the value 2H to 2−2H�. To see this, note
that the EB parameter depends on the behavior of correlation
function Eq. �3� and the latter are identical for the processes
x�t� and z�t� in the subdiffusion case, so EB�z��EB�x�.

C. Underdamped fractional Langevin equation

We now analyze the fractional Langevin equation with
power-law kernel, Eq. �6�,

m
d2y�t�

dt2 = − �̄�
0

t

�t − ��2H−2dy

d�
d� + ��t� , �18�

with dy�0� /dt=v0, y�0�=0, where v0 is the initial velocity.
The solution of the stochastic Eq. �18� is

y�t� = v0tE2H,2�− �t2H� +


m
�

0

t

�t − ��

�E2H,2„− ��t − ��2H
…����d� ,

where �= ��̄��2H−1�� /m and the generalized Mittag-Leffler
function is

E�,��t� = �
n=1

�
tn

���n + ��
,

and E�,��−t���t���−���−1 when t→ +�. We have

�y�t�� = v0tE2H,2�− �t2H� �
v0

�

t1−2H

��2 − 2H�
�19�

and

�y2�t�� =
2kBT

m
t2E2H,3�− �t2H� �

2kBT

�̄��2H − 1���3 − 2H�
t2−2H,

�20�

where the thermal initial condition v0
2=kBT /m is assumed.

Note that for short times we have �y2�t����kBT /m�t2. Equa-
tions �19� and �20� were found �32,33�.

The covariance of y�t� reads

�y�t1�y�t2�� = v0
2t1t2E2H,2�− �t1

2H�E2H,2�− �t2
2H�

+
kBT�̄

m2 �
0

t2 �
0

t1

d�ds�t1 − ��E2H,2�− ��t1 − ��2H�

��t2 − s�E2H,2�− ��t2 − s�2H��� − s�2H−2. �21�

When t1 , t2 tend to infinity,

�y�t1�y�t2�� �
kBT

�̄�2�2H − 1��2�2 − 2H�
�

0

t2 �
0

t1

d�ds

��t1 − ��1−2H�t2 − s�1−2H�� − s�2H−2, �22�

i.e., the covariance of y�t� approximates to the ones of z�t�,
so we can expect in the long-time limit

��2�y�� � ��2�z�� � ��2�x�� �23�

and

EB�y� � EB�z� � EB�x� . �24�

The simulations �see Appendix B for the computational
scheme�, Fig. 4, confirms Eq. �23�, and Figs. 5 and 6 support
Eq. �24�. Note that for short times we have a ballistic behav-
ior for y�t� �see Fig. 4�, but not for z�t� and x�t�, so clearly
both � and t must be large for Eq. �24� to hold.

IV. DISCUSSION

We showed that the fractional processes x�t�, y�t�, and z�t�
are ergodic. The ergodicity breaking parameter decays as a
power law to zero. In the ballistic limit �x2�� t2, nonergod-
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FIG. 4. �Color online� The time average �2(y�t�) is a random
variable depending on the underlying trajectory. A total of 23 tra-
jectories, besides the solid line, with � denoting the average of the
23 trajectories, are plotted. The measurement time is t=104, 2
−2H=0.75, DH= 1

2 , m=1, �̄=1, v0=1, kBT=1. Lines with slopes of
2.0 �ballistic motion in short times� and 0.75 �subdiffusion for long
times� are drawn to guide the eye. For long � the behavior of the
underdamped motion is similar to usual fractional Brownian
motion.

WEIHUA DENG AND ELI BARKAI PHYSICAL REVIEW E 79, 011112 �2009�

011112-4



icity is found. For the opposite localization limit �x2�� t0

�i.e., H→0 for fBM�, the asymptotic convergence is reached
only after very long times. Our most surprising result is that
the transition between the localization limit and the ballistic
limit is not smooth. When H= 3

4 , the behavior of the EB pa-
rameter is changed and the amplitude k�H� diverges �36�.

Clearly anomalous diffusion is not a sufficient condition
for ergodicity breaking. While the subdiffusive CTRW model
�13� is nonergodic, the fBM and fractional Langevin motion
are ergodic. Another important difference is that for an infi-
nite system we have for the CTRW ��2��� / t�, so the time-
average procedure yields a linear dependence on � and an
aging effect with respect to the measurement time. Hence for

CTRW an anomalous diffusion process may seem normal
with respect to � �13,14,37,38�. In contrast, for the fractional
models we investigated here we have ��2����, which is the
same as the ensemble average �x2�� t�. The main difference
between the two approaches is that the CTRW process is
nonstationary.

Experiments in the cell are conducted for finite times, the
main reason being the finite lifetime of the cell. Hence the
whole physical concept of ergodicity might not be appli-
cable, since in experiments we cannot perform long time
averages. In finite-time experiments even normal processes
may seem nonergodic and anomalous, and what may seem to
be a deviation from ergodic behavior may actually be a
finite-time effect. Here we gave analytical predictions for the
deviations from ergodicity for finite-time measurement,
based on three fractional models. The EB parameter depends
on measurement time and lag time, and can be used to com-
pare experimental data with predictions of fractional equa-
tions. The EB parameter for the CTRW is given in �13�. It
should be noted, however, that for subdiffusion in the cell,
the effects of the boundary of the cell, and three-dimensional
trajectories, might be important. These effects should be in-
vestigated in the future, most likely with simulations. Fur-
ther, as mentioned in the text, direct comparison between
experiments and theory is not yet possible, since the number
of measured trajectories is small.
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APPENDIX A: DERIVATION OF THE MAIN RESULT,
EQ. (13)

From Eq. �10�,

���2
„x�t�…�2�

=

�
0

t−�

dt1�
0

t−�

dt2��x�t1 + �� − x�t1��2�x�t2 + �� − x�t2��2�

�t − ��2 .

�A1�

Using Eq. �3� and the following formula for Gaussian pro-
cess with mean zero �31�,

�x�t1�x�t2�x�t3�x�t4�� = �x�t1�x�t2���x�t3�x�t4�� + �x�t1�x�t3��

��x�t2�x�t4�� + �x�t1�x�t4���x�t2�x�t3�� ,

we obtain

��x�t1 + �� − x�t1��2�x�t2 + �� − x�t2��2� = 4DH
2 �4H

+ 2DH
2 ��t1 + � − t2�2H + �t2 + � − t1�2H − 2�t1 − t2�2H�2.

�A2�

From Eqs. �10�, �11�, �A1�, and �A2�, we have
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FIG. 5. �Color online� The ergodicity breaking parameter EB�y�
versus t. Simulations of 200 trajectories were used with 2−2H
=0.75, �=10, m=1, �̄=1, v0=1, kBT=1. The stars � are the theo-
retical result Eq. �13� without fitting.
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FIG. 6. �Color online� The ergodicity breaking parameter EB�y�
versus �. A total of 200 trajectories are used to compute the average
and variance, the measurement time t=104, 2−2H=0.75, m=1, �̄
=1, v0=1, kBT=1. The stars � are the theoretical result Eq. �13�
with corresponding parameter values. We see that results found
from the underdamped Langevin equation converge to our analyti-
cal theory based on fBM.
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Xvar��2„x�t�…� = 4DH
2��

0

2�

�t − � − t����t� + ��2H + �t� − ��2H − 2t�2H	2dt�
��t − ��2

V1 �A3�

�A4�

When t��, we may approximate the upper limit in the in-
tegral of V2 with t, and 1 / �t−��2→1 / t. We then make a
change of variables according to x= �t− t�� / t and find

V2 = 4DH
2 t4H�

0

1

x�1 − x�4H�	1 +
�

t�1 − x�

2H

+ �1 −
�

t�1 − x�
�2H

− 2�2

dx . �A5�

We expand in � / t to second order and find

V2 � 4DH
2 t4H	�

t

4

H2�2H − 1�2�
0

1

x�1 − x�4H−4dx .

�A6�

The integral is finite only if H

3
4 , hence for H�

3
4 we will

soon use a different approach. We see that V2� t4H−4 while it
is easy to show that V1�1 / t, hence for H


3
4 we find after

solving the integral

Xvar��2
„x�t�…� � 16DH

2 t4H	�

t

4

H2�2H − 1�2	 1

4H − 3

−
1

4H − 2

 . �A7�

Now we write the variance as

Xvar��2
„x�t�…� =

4DH
2

�t − ��2�
0

t−�

�t − � − t����t� + ��2H

+ �t� − ��2H − 2t�2H�2dt�. �A8�

Changing variables according to �= t� /�, we find

Xvar��2
„x�t�…� =

4DH
2

�t − ��
�4H+1�

0

t/�−1

d���1 + ��2H + �1 − ��2H

− 2�2H�2 + Xcorr. �A9�

The correction term is

Xcorr = −
4DH

2

�t − ��2�4H+2�
0

t/�−1

d���1 + ��2H + �1 − ��2H

− 2�2H�2� . �A10�

Taking the upper limit of the integral in Eq. �A9� to �, we
find that for H�

3
4 and long times

Xvar��2
„x�t�…� � 4DH

2 �4H	�

t

�

0

�

d���1 + ��2H + �1 − ��2H

− 2�2H�2. �A11�

This is because Xcorr� tmax�4H−4,−2� �we prove this in the fol-
lowing� and this term is smaller than the leading term, which
has a 1 / t decay, since H�

3
4 . Now we estimate the correction

term Eq. �A10�,

1

t2�
0

t/�−1

d���1 + ��2H + �1 − ��2H − 2�2H�2�

=
1

t2	�
0

2

d� + �
2

t/�−1

d�
��1 + ��2H + �1 − ��2H − 2�2H�2� .

�A12�

Using the Lagrange reminder of Taylor expansion in 1 /�,
when H�

3
4 we have

1

t2�
2

t/�−1

d���1 + ��2H + �1 − ��2H − 2�2H�2�

=
1

t2�
2

t/�−1

d��	1 +
1

�

2H

+ �1 −
1

�
�2H

− 2�2

�4H+1

=
1

t2�
2

t/�−1

d���1 + ��2H−2 + �1 − ��2H−2�

�2H�2H − 1��4H−3 where �� � �0, 1
2��

� tmax�4H−4,−2�. �A13�

For H= 3
4 we use Eq. �A9�, however now we expand to third

order and find
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Xvar��2
„x�t�…� � 16DH

2 H2�2H − 1�2�3 ln t	�

t

 ,

�A14�

while the correction term Xcorr� t−1 �see Eq. �A13�� is neg-
ligible. Using Eqs. �A7�, �A11�, and �A14�, we derive Eq.
�13�.

APPENDIX B: COMPUTATIONAL SCHEME FOR EQ. (6)

The numerical algorithm for simulating the trajectories of
the generalized Langevin equation is developed by combin-
ing the predictor-corrector method �5� with Hosking’s ap-
proach �to generate fBM�. The computational scheme is as
follows �35�:

yh�tn+1� = y0 + h�
j=1

n

vh�tj� + h�v0 + vh�tn+1��/2, �B1�

where dy�0� /dt=v0 and

vh�tn+1� = 	 2H�2H + 1�m
2H�2H + 1�m + h2H�̄



�	v0 −

h2H

2H�2H + 1�
�̄

m
�
j=0

n

aj,n+1vh�tj�

+


m
BH�tn+1�
 , �B2�

with

aj,n+1 = �n2H+1 − �n − 2H��n + 1�2H if j = 0,

�n − j + 2�2H+1 + �n − j�2H+1 − 2�n − j + 1�2H+1 if 1 � j � n ,
� �B3�

where h is the step length, i.e., h= tj+1− tj.
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